Lecture: 3-1 Derivatives of Polynomials and EXPONENTIALS

Derivative of a Constant Function: $\frac{d}{d x}(c)=$

Example 1: Find the derivatives of the following functions.
(a) $f(x)=5.4$
(b) $g(x)=\pi^{7}$
(c) $h(x)=\ln 2$

Example 2: Using the definition of the derivative, find the derivatives of the following functions.
(a) $f(x)=x^{2}$
(b) $f(x)=x^{3}$

The Power Rule: If n is a positive integer, then $\frac{d}{d x} x^{n}=$

Example 3: Find the derivatives of the following functions.
(a) $f(x)=x^{9}$
(b) $y=x^{99}$
(c) $\frac{d}{d t}\left(t^{5}\right)$

Using the definition of the derivative you can prove that the following derivatives. Does the power rule appear to hold for non-integer exponents as well?
(a) $\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}$
(b) $\frac{d}{d x} \sqrt{x}=\frac{1}{2 \sqrt{x}}$

Example 4: Differentiate the following functions.
(a) $f(x)=\frac{1}{x^{5}}$
(b) $y=\sqrt[3]{x^{5}}$

Using the power rule we can find equations of tangent lines much more quickly! We can also find the normal line, which is defined as the line through a point P that is perpendicular to the tangent line at P.

Example 5: Find equations of the tangent line and normal line to the curve $y=x^{2} \sqrt{x}$ at the point $(1,1)$.

The Constant Multiple Rule: If c is a constant and f is differentiable function then

$$
\frac{d}{d x}[c f(x)]=c \frac{d}{d x} f(x) .
$$

Example 6: Differentiate the following functions.
(a) $\frac{d}{d x}\left(5 x^{7}\right)$
(b) $\frac{d}{d x}\left(-3 \sqrt{x^{5}}\right)$

The Sum/Difference Rule: If f and g are both differentiable, then

$$
\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x) .
$$

Example 7: Find the derivative of $y=x^{7}+10 x^{3}-7 x^{2}+2 x-9$.

Example 8: Find the points on the curve $y=x^{4}-2 x^{2}+4$ where the tangent line is horizontal.

Example 9: Find the derivatives of the following functions.
(a) $y=\left(5 x^{2}-2\right)^{2}$
(b) $f(x)=\frac{\sqrt{x}+2 x-3}{x^{3}}$

Derivative of the Natural Exponential Function: $\frac{d}{d x} e^{x}=e^{x}$

Example 10: Find the derivatives of the following functions.
(a) $f(t)=\sqrt{3 t}+\sqrt{\frac{3}{t}}$
(b) $f(x)=e^{x+2}+4$

Example 11: At what point on the curve $y=e^{x}$ is the tangent line parallel to the line $y-5 x=2$?

Example 13: Biologists have proposed a cubic function to model the length L of an Alaskan rockfish at age A :

$$
L=0.0155 A^{3}-0.372 A^{2}+3.95 A+1.21
$$

where L is measured in inches and A in years. Calculate $\frac{d L}{d A}$ at $A=12$ and interpret your answer.

Example 14: The equation of motion of a particle is $s=2 t^{3}-15 t^{2}+36 t+1$. Find the velocity and acceleration functions. Then, determine the acceleration when the velocity is zero.

Example 15: Find the following limits.
(a) $\lim _{h \rightarrow 0} \frac{(2+h)^{5}-32}{h}$
(b) $\lim _{x \rightarrow 1} \frac{x^{99}-1}{x-1}$

